(Q37). We know that (a)mn = amn let am = x then m = logax , xn = amn then logaxn = mn= nlogax (why)

(a)mn = amn am = x
log axn = log a (am)n(am)n = amn

= logaamn

= mn logaa

mn (1) = mn

logaxn = mn .........1

n logxx = n logaam

= n (m logaa)

= n (m ()) = mn

logax = mn .........2

Here 1 & 2 are

Logaxn = mn = logax

Verified

Logaxn = mn = logax