(Q5)prove that
1+tan2A
1+cot2A
= (
1+tan A
1+cot A
)2 =tan2A

Answer:

L.H.S=
1+tan2A
1+cot2A
=
sec2A
cosec2A

[1+tan2A=sec2A and 1+cot2A=cosec2A]

[sec A=
1
A
and cosec A=
1
A
]

=
1
2A
1
2A

=
1
2A
×
2A
1

=
2A
2A
= tan2A =R.H.S

L.H.S=(
1+tan A
1+cot A
)2

= (
1+
A
cos A
1+
A
sin A
)2 = (
cos A + A
cos A
sin A + A
sin A
)2

=
(cos A + A)2
cos2A
×
sin2 A
( A + sin A)2

=
2A
2A
= tan2A = R.H.S