(Q2)The median of the following data is 525. Find the values of x and y, if the total frequency is 100. Here, CI stands for class interval and Fr for frequency

CI 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000
Fr 2 5 x 12 17 20 y 9 7 4
Class Intervals Frequency Cumulative Frequency
0-100 2 2
100-200 5 7
200-300 x 7+x
300-400 12 19+x
400-500 17 36+x
500-600 20 56+x
600-700 y 56+x+y
700-800 9 65+x+y
800-900 7 72+x+y
900-1000 4 76+x+y

Solution :

It is given that n = 100

So, 76+x+y = 100,i.e., x+y=24

The median is 525, which lies in the class 500-600

So, l = 500, f = 20, cf = 36 + x, h = 100

Using the formula, Median = l +
(
n
2
- cf )
f
× h
= +
( - 36 - x)
20
×

i.e.,  - = ( - x)×

i.e.,  = - 5x

i.e.,  5x = - =

So,  x =

Therefore, from (1), we get + y =

i.e., y =