Monthly consumption (in units) | 65-85 | 85-105 | 105-125 | 125-145 | 145-165 | 165-185 | 185-205 |
Number of consumers | 4 | 5 | 13 | 20 | 14 | 8 | 4 |
Answer :
Monthly Consumption (in units) | Number of Consumers (fi) | Cumulative frequency (xi) | Class marks |
ui =
xi - a
h
(h = 20) |
fiui |
---|---|---|---|---|---|
65-85 | 4 | 4 | 75 | -3 | - |
85-105 | 5 | 9 | 95 | -2 | - |
105-125 | 13 | 22 | 115 | -1 | - |
125-145 | 20 | 42 | 135 (a) | 0 | |
145-165 | 14 | 56 | 155 | 1 | |
165-185 | 8 | 64 | 175 | 2 | |
185-205 | 4 | 68 | 195 | 3 | |
∑fi = 68 | - | - | - | ∑fixi = |
Sum of the frequencies = 68
Hence median class = 125-145
Lower boundary of the median class, l = 125
cf - cumulative frequency of the class preceding the median class = 22
f - frequency of the median class = 20
h = class size = 20
∴ Median = + =
Maximum number of consumers lie in the class 125-145
Modal class is 125-145
l - lower limit of the modal class =125
f1 - frequency of the modal class = 20
f0 - frequency of the class preceding the modal class = 13
f2 - frequency of the class succeeding the modal class = 14
h - size of the class = 20
Mode(Z) = .769
a = assumed mean = 135
Mean, Median and Mode are approximately same in this case.