Given cubic polynomial
p(x)=x3+3x2-x-3
Comparing the given polynomial with
ax3 + bx2 + cx + d,we get a=1,b=3,c= -1,d= -3
Further given zeros are 1,-1 and -3
p(1)=(1)3 + 3(1)2 - 1 - 3 =
p(-1)=(-1)3 + 3(-1)2 - (-1) - 3 =
p(-3)=(-3)3 + 3(-3)2 - (-3) - 3 =
Therefore 1,-1 and -3 are the zeros of x3+3x2-x-3
So,we take α=1, β=-1 and γ= -3
Now,α+β+γ=1+(-1)+(-3)=-
αβ+βγ+ γα=1(-1)+(-1)(-3)+(-3)1
=-1+3-3=-