Let the length of the rectangle = x units
breadth = y units Area = l . b = xy sq. units
By problem, (x – ) (y + ) = xy – and (x + ) (y – ) = xy +
⇒ xy + x – y – 10 = xy – and xy – x + y – 50 = xy +
⇒ x – y = xy – – xy + 10 and -x + y = xy + – xy +
⇒ x – y = – and -x + y =
| 2x - 5y = -70 | ||||
|---|---|---|---|---|
| x | y | (x,y) | ||
| 10 | (10,) | |||
| 20 | (20,) | |||
| -5x + 10y = 100 | ||||
|---|---|---|---|---|
| x | y | (x,y) | ||
| 0 | (0,) | |||
| -10 | (-10,) | |||
The two lines intersect at the point (, )
∴ The solution is x = and y =
i.e., length = units; breadth = units.