(Q11).Solve each of the following pairs of equations by reducing them to a pair of linear equations.

1
3x+y
+
1
3x-y
=
3
4
1
2(3x+y)
-
1
2(3x-y)
=
-1
8

Given

1
3x+y
+
1
3x-y
=
3
4
and
1
2(3x+y)
-
1
2(3x-y)
=
-1
8
Take
1
3x+y
= and
1
3x-y
= , then

the given equations reduce to

a + b =
3
4
a + b = 3 ……… (1)
a
-
b
=
-1
8
a-b
=
-1
8
⇒ a - b =
-1
a – b = – 1 ……… (2)
equation (1) ⇒ a + b = 3
equation (2) ⇒ a - b = -1

a =
⇒ a =
=
Substituting a =
1
in equation (1) we get
4(
1
) + 4b = 3 ⇒ + 4b = 3
⇒ 4b = 3 - ⇒ b =
4
=
but a =
1
3x-y
=
1
⇒ 3x + y = ............(3)
b =
1
3x-y
=
1
⇒ 3x - y = ............(4)

Solving (3) and (4)

3x + y =

3x - y =


x =
⇒ x =
=

Substituting x = in 3x + y = 4

⇒ 3() + y = 4

⇒ y = 4 – =

∴ The solution (x, y) = (, )