(Q5)Check whether the follwing are quadratic equations.

(i)(x+1)2=2(x-3) (ii)x2-2x=(-2)(3-x) (iii)(x-2)(x+1)=(x-1)(x+3) (iv)(x-3)(2x+1)=x(x+5)

(v)(2x-1)(x-3)=(x+5)(x-1) (vi)x2+3x+1=(x-2)2  (vii)(x+2)3=2x(x2-1) (viii)x3-4x2-x+1=(x-2)3

Answer:

(i)Given (x+1)2=2(x-3)

x2+x+=2(x-3)=2x-6

x2+x+-2x+6=0

x2+=0 is a quadratic equation.

(ii)x2-2x=(-2)(3-x)

x2-2x=-2(3-x)

x2-2x=-6+2x

x2-x+=0 is a quadratic equation.

(iii)(x-2)(x+1)=(x-1)(x+3)

x(x+1)-2(x+1)

x(x+3)-1(x+3)

x2+x-2x-2=x2+3x-x-3

x2-x-2=x2+2x-3

x-=0 is not a quadratic equation.

(iv)(x-3)(2x+1)=x(x+5)

x(2x+1)-3(2x+1)=x.x+5.x

2x2+x-6x-3=x2+5x

2x2-5x-3-x2-5x=0

x2-x-=0 is a quadratic equation.

(v)(2x-1)(x-3)=(x+5)(x-1)

2x(x-3)-1(x-3)=x(x-1)+5(x-1)

2x2-6x-x+3=x2-x+5x-5

2x2-7x+3-x2-4x+5=0

x2-x+=0

Hence its a quadratic equation.

(vi)x2+3x+1=(x-2)2

x2+3x+1=x2-4x+4

x-3=0 is not a quadratic equation.

(vii)(x+2)3=2x(x2-1)

x3+6x2+12x+8=2x3-2x

[∵(a+b)3=a3+3a2b+3ab2+b3]

-x3+x2+x+8=0

It is not a quadratic equation.

(viii)x3-4x2-x+1=(x-2)3

x3-4x2-x+1=x3-6x2+12x-8

6x2-12x+8-4x2-x+1=0

2x2-x+=0 is a quadratic equation.