(Q6)Show that the product of the roots of a quadratic equation ax2 + bx + c = 0 is
c
a

Answer:

Let the quadratic equation = ax2 + bx + c = 0(a≠0)

ax2 + bx = -c

x2 +
b
a
x =
-c

x2 +2
b
a
x(
1
2
) =
-c

x2 + 2.x(
b
2a
) =
-c

x2 + 2.x.
b
2a
+ (
b
2a
)2 =
-c
+ (
b
)2

(x +
b
2a
)2 =
b2
2
-
c
=
b2 - c
42

x +
b
2a
=
√(b2 - c)
2

x = -
b
2a
±
√(b2 - c)
2

=
-b + √(b2 - c)
2
,
-b - √(b2 - c)
2

Product of the roots

= [
-b + √(b2 - c)
2
] × [
-b - √(b2 - c)
2
]

=[
-b
2a
]2 - [
√(b2 - c)
2
]

=
b2
4a2
-
(b2-4ac)
4a2

=
b2-b2+4ac
4a2
=
4ac
4a2

=
c
a