(Q22).In an AP:

(iv) Given a3 = 15, S10 = 125, find d and a10.

Given :

a3 = a + d =

⇒ a = d ……… (1)

S10 = but take S10 as 175

i.e., S10 =

We know that,

Sn =
n
2
[a + l]
⇒ S10 =
2
[a + l]
=
2
[a + (a+d)]

= [a+d]

= [a + d]

= (d) + d [∵ a = 15 – 2d]

= d + d

= d

⇒ d =
=

Substituting d = in equation (1) we get

a = – 2 × = =

Now, an = a + (n – 1) d

a10 = a + d = + × 1 = + =

∴ a10 = ; d =