Given an A.P in which Sn = 4n – n2
Taking n = 1 we get
S1 = 4 × - 12 = – 1 =
n = ; S2 = a1 + a2 = 4 × – 22 = – =
n = ; S3 = a1 + a2 + a3 = 4 × - 32 = – =
n = ; S4 = a1 + a2 + a3 + a4 = 4 × – 42 = – = 0
Hence, S1 = a1 =
a2 = S2 – S1 = – =
a3 = S3 – S2 = – = -
a4 = S4 – S3 = – = -
So, d = a2 – a1 = – = -
Now, a10 = a + d [∵ an = a + (n – 1) d]
= 3 + × (- )
= 3 – = -
an = 3 + (n – 1) × (-)
= 3 – n +
= – n