We know that a point on the Y-axis is of the form (0,y) so, let the point P(0,y) be equidistant from A and B. Then
PA=√(( - 0)2 + ( - y)2)
PB=√((- - 0)2 + ( - y)2)
PA2=PB2
( - 0)2+( -y)2= (- - 0)2+( - y)2
+25+y2-y=+9+y2-y
4y=
y=
So the required point is (0,)
So (0,) is equidistant from(6,5) and (4,3).