Solution :
Given :In ∆ABD; ∠A = 90° AC ⊥ BD
R.T.P :(i) AB2 = BC.BD
Proof :In ∆ABD and ∆CAB,
∠BAD = ∠ [each 90°]
∠B = ∠B [common]
∴ ∆ABD ∼ ∆
[by A.A. similarity condition]
[∵ Ratios of corresponding sides of similar triangles are equal]
⇒ AB. = BC.
AB2 = .
ii) AD2 = BD.CD
Proof : In ∆ABD and ∆CAD
∠BAD = ∠ [each 90°]
∠D = ∠ (common)
∴ ∆ABD ∼ ∆ [A.A similarity]
AD.AD = .
= BD.CD
iii) AC2 = BC.DC
Proof : From (i) and (ii)
∆ACB ∼ ∆
[∵ ∆BAD ∼ ∆BCA ∼ ∆ACD]
AC.AC = .
= BC.DC