Given :∆ABC; O' is an interior point of ∆ABC.
OD ⊥ BC, OE ⊥ AC, OF ⊥ AB.
R.T.P :
i) OA2 + OB2 + OC2 - OD2 - OE2 - OF2 = AF2 + BD2 + CE2
Proof : In OAF, OA2 = AF2 + OF2 [Pythagoras theorem]
⇒ - = AF2.....(1)
In ∆OBD,
OB2 = BD2 + OD2
⇒ - = BD2.....(2)
In ∆OCE, OC2 = CE2 + OE2
- = CE2.....(3)
Adding (1), (2) and (3) we get,
2 - OF2 + 2 - OD2 + OC2 - 2 = AF2 + 2 + CE2
OA2 + 2 + OC2 - 2 - OE2 - 2 = AF2 + 2 + CE2.....(4)
ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
In ∆OAE,
OA2 = AE2 + OF2.....(1)
⇒ 2 - 2 = AE2
In △OBF, OB2 = BF2 + OF2
2 - 2 = BF2 .....(2)
In △OCD, OC2 = OD2 + CD2
2 - 2 = CD2 .....(3)
Adding (1), (2) and (3) we get
OA2 - 2 + OB2 - 2 + OC2 - 2 = AE2 + 2 + CD2
OA2 + 2 + OC2 - 2 - OE2 - 2 = AE2 + 2 + BF2
AF2 + 2 + CE2 = 2 + CD2 + 2 [From problem (i)]