(Q16)'O' is any point in the interior of a triangle ABC. OD ⊥ BC, OE ⊥ AC and OF ⊥ AB, show that

i) OA2 + OB2 + OC2 - OD2 - OE2 - OF2 = AF2 + BD2 + CE2

ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2.

ABCDEFO

Given :∆ABC; O' is an interior point of ∆ABC.

OD ⊥ BC, OE ⊥ AC, OF ⊥ AB.

R.T.P :

i) OA2 + OB2 + OC2 - OD2 - OE2 - OF2 = AF2 + BD2 + CE2

Proof : In OAF, OA2 = AF2 + OF2 [Pythagoras theorem]

- = AF2.....(1)

In ∆OBD,

OB2 = BD2 + OD2

- = BD2.....(2)

In ∆OCE, OC2 = CE2 + OE2

- = CE2.....(3)

Adding (1), (2) and (3) we get,

2 - OF2 + 2 - OD2 + OC2 - 2 = AF2 + 2 + CE2

OA2 + 2 + OC2 - 2 - OE2 - 2 = AF2 + 2 + CE2.....(4)

ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2

In ∆OAE,

OA2 = AE2 + OF2.....(1)

2 - 2 = AE2

In △OBF, OB2 = BF2 + OF2

2 - 2 = BF2 .....(2)

In △OCD, OC2 = OD2 + CD2

2 - 2 = CD2 .....(3)

Adding (1), (2) and (3) we get

OA2 - 2 + OB2 - 2 + OC2 - 2 = AE2 + 2 + CD2

OA2 + 2 + OC2 - 2 - OE2 - 2 = AE2 + 2 + BF2

AF2 + 2 + CE2 = 2 + CD2 + 2 [From problem (i)]