(Q19) In an equilateral triangle ABC, D is a point on side BC such that BD =
1
3
BC. Prove that 9AD2 = 7AB2.

Solution :

ABCDE

In ∆ABE, ∠E = 90°

⇒ AB is hypotenuse.

∴ AB2 = AE2 + BE2

AE2 = 2 - 2

⇒ AE2 = 2 - (
BC
2
)2
⇒ AE2 = AB2 - (
)2 (∵ AB = BC)
AE2 =
3
4
AB2.....(1)

In ∆ADE, ∠E = 90o

⇒ AD is hypotenuse.

⇒ AD2 = AE2 + DE2

⇒ AE2 = AD2 - DE2

⇒ AE2 = AD2 - ( - )2

  = AD2 - (
BC
2
-
BC
3
)2
  = AD2 - (
)2
⇒ AE2 = AD2 - (
AB
6
)2 .....(2)

∴ (1) = (2)

AB2 = AD2 -
AB2
3
4
AB2 +
AB2
36
= 2
28
36
AB2 = AD2

AB2 = AD2

AB2 = AD2

Hence proved.