Solution :
Let ∆PQR is a right angled triangle, ∠Q = o
Let PQ = a, QR = b and PR = hypotenuse = c
Then from Pythagoras theorem we can say a2 + 2 = c2 .....(1)
∆PSR is an equilateral triangle drawn on hypotenuse
∴ PR = PS = RS = c,
∆QRU is an equilateral triangle drawn on the side 'QR' = b
∴ QR = RU = QU = b
∆PQT is an equilateral triangle drawn on another side 'PQ' = a
∴ PQ = PT = QT = a
Now sum of areas of equilateral triangles on the other two sides =
= Area of equilateral triangle on the hypotenuse.
Hence Proved